Essential dimension lowering mappings having dense deficiency set

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised dimension reduction mappings

Abstract. We propose a general principle to extend dimension reduction tools to explicit dimension reduction mappings and we show that this can serve as an interface to incorporate prior knowledge in the form of class labels. We explicitly demonstrate this technique by combining locally linear mappings which result from matrix learning vector quantization schemes with the t-distributed stochast...

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

Quasiconformal Mappings Which Increase Dimension

For any compact set E ⊂ R , d ≥ 1 , with Hausdorff dimension 0 < dim(E) < d and for any ε > 0 , there is a quasiconformal mapping (quasisymmetric if d = 1) f of R to itself such that dim(f(E)) > d− ε .

متن کامل

Essential dimension

Informally speaking, the essential dimension of an algebraic object is the minimal number of independent parameters one needs to define it. This notion was initially introduced in the context where the objects in question are finite field extensions [BuR97]. Essential dimension has since been investigated in several broader contexts, by a range of techniques, and has been found to have interest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1985

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1985-0768741-0